Unsupervised Fraud Detection in Time Series data
نویسندگان
چکیده
Fraud detection is of great importance to financial institutions. This paper is concerned with the problem of finding outliers in time series financial data using Peer Group Analysis (PGA), which is an unsupervised technique for fraud detection. The objective of PGA is to characterize the expected pattern of behavior around the target sequence in terms of the behavior of similar objects, and then to detect any difference in evolution between the expected pattern and the target. The tool has been applied to the stock market data, which has been collected from Bangladesh Stock Exchange to assess its performance in stock fraud detection. We observed PGA can detect those brokers who suddenly start selling the stock in a different way to other brokers to whom they were previously similar. We also applied tstatistics to find the deviations effectively.
منابع مشابه
Fast Unsupervised Automobile Insurance Fraud Detection Based on Spectral Ranking of Anomalies
Collecting insurance fraud samples is costly and if performed manually is very time consuming. This issue suggests usage of unsupervised models. One of the accurate methods in this regards is Spectral Ranking of Anomalies (SRA) that is shown to work better than other methods for auto insurance fraud detection specifically. However, this approach is not scalable to large samples and is not appro...
متن کاملAnomaly Detection Using Unsupervised Profiling Method in Time Series Data
The anomaly detection problem has important applications in the field of fraud detection, network robustness analysis and intrusion detection. This paper is concerned with the problem of detecting anomalies in time series data using Peer Group Analysis (PGA), which is an unsupervised technique. The objective of PGA is to characterize the expected pattern of behavior around the target sequence i...
متن کاملFDiBC: A Novel Fraud Detection Method in Bank Club based on Sliding Time and Scores Window
One of the recent strategies for increasing the customer’s loyalty in banking industry is the use of customers’ club system. In this system, customers receive scores on the basis of financial and club activities they are performing, and due to the achieved points, they get credits from the bank. In addition, by the advent of new technologies, fraud is growing in banking domain as well. Therefor...
متن کاملCredit Card Fraud Detection using Data mining and Statistical Methods
Due to today’s advancement in technology and businesses, fraud detection has become a critical component of financial transactions. Considering vast amounts of data in large datasets, it becomes more difficult to detect fraud transactions manually. In this research, we propose a combined method using both data mining and statistical tasks, utilizing feature selection, resampling and cost-...
متن کاملFraud Detection in Health Insurance Using Expert Re-referencing
Fraud is widespread and very costly to the healthcare insurance system. Fraud involves intentional deception or misrepresentation intended to result in an unauthorized benefit. It is shocking because the incidence of health insurance fraud keeps increasing every year. In order to detect and avoid the fraud, data mining techniques are applied. Frauds blow a hole in the insurance industry. Health...
متن کامل